Selasa, 06 November 2012

Central Processing Unit

CPU berfungsi sebagai pusat pengolahan dan eksekusi data berdasarkan routine–routine program yang diberikan padanya. CPU mengendalikan seluruh sistem komputer sehingga sebagai konsekuensinya memiliki koneksi ke seluruh modul yang menjadi bagian sistem komputer.

Sistem BUS
  1. Penghubung bagi keseluruhan komponen komputer dalam menjalankan tugasnya
  2. Komponen komputer :

  1. CPU
  2. Memori
  3. Perangkat I/O
  4. BUS adalah
                Bus adalah Jalur komunikasi yang dibagi pemakai Suatu set kabel tunggal yang digunakan untuk  menghubungkan berbagai subsistem
Interkoneksi Bus – Struktur Bus
Sebuah bus biasanya terdiri atas beberapa saluran. Sebagai contoh bus data terdiri atas 8 saluran sehingga dalam satu waktu dapat mentransfer data 8 bit. Secara umum fungsi saluran bus dikatagorikan dalam tiga bagian, yaitu :

  • Saluran data
  • Saluran alamat
  • Saluran kontrol

Saluran Data
Lintasan bagi perpindahan data antar modul. Secara kolektif lintasan ini disebut bus data. Umumnya jumlah saluran terkait dengan panjang word, misalnya 8, 16, 32 saluran.
Tujuan : agar mentransfer word dalam sekali waktu.
Jumlah saluran dalam bus data dikatakan lebar bus, dengan satuan bit, misal lebar bus 16 bit
Saluran Alamat (Address Bus)
  • Digunakan untuk menspesifikasi sumber dan tujuan data pada bus data.
  • Digunakan untuk mengirim alamat word pada memori yang akan diakses CPU.
  • Digunakan untuk saluran alamat perangkat modul komputer saat CPU mengakses suatu modul.
  • Semua peralatan yang terhubung dengan sistem komputer, agar dapat diakses harus memiliki alamat.
Contoh : mengakses port I/O, maka port I/O harus memiliki alamat hardware-nya
Saluran kontrol (Control Bus)
Digunakan untuk mengontrol bus data, bus alamat dan seluruh modul yang ada.
Karena bus data dan bus alamat digunakan oleh semua komponen maka diperlukan suatu mekanisme kerja yang dikontrol melalui bus kontrol ini.
Sinyal – sinyal kontrol terdiri atas
  • Sinyal pewaktuan adalah Sinyal pewaktuan menandakan validitas data dan alamat
  • Sinyal–sinyal perintah adalah Sinyal perintah berfungsi membentuk suatu operasi

Type BUS
1. Dedicated
          Penggunaan alamat terpisah dan jalur Keuntungan : Throughtput yang tinggi, karena kemacetan lalulintas kecil
Kerugian : meningkatnya  ukuran dan biaya sistem
2. Multiplexed
Penggunnan saluran yang sama untuk berbagai  keperluan Keuntungan : Memerlukan saluran yang lebih sedikit, uang menghemat ruang dan biaya
   Kerugian : Diperlukan rangkaian yang lebih kompleks untuk setiap modul.

ALU (Arithmetic and Logical Unit)
            ALU melaksanakan seluruh perhitungan (penambahan, pengurangan, perkalian atau pembagian) dan operasi logika. ALU berfungsi melakukan operasi aritmatik dan logik yang terbagi menjadi empat kelas, yaitu decimal arithmetic, fixed point arithmetic, floating point aritmetic dan logic operation. Terdapat dua macam bilangan yang ditangani oleh prosesor, yaitu bilangan fixed point dan bilangan floating point.
Bilangan fixed point adalah bilang yang memiliki nilai digit spesifik pada salah satu titik desimalnya, Hal ini akan membatasi jangkauan nilai yang mungkin untuk angka-angka tersebut, namun, hal ini justru dapat dihitung oleh prosesor.
Sedangkan bilangan floating point, adalah bilangan yang diwujudkan dalam notasi ilmiah, yaitu berupa angka pecahan desimal dikalikan dengan angka 10 pangkat bilangan tertentu. Misalnya: 705,2944 x 109, atau 4,3 x 10-7. Cara penulisan angka seperti ini merupakan cara singkat untuk menuliskan angka yang nilainya sangat besar maupun sangat kecil. Bilangan seperti ini banyak digunakan dalam pemrosesan grafik dan kerja ilmiah. Proses aritmatika bilangan floating point memang lebih rumit dan prosesor membutuhkan waktu yang lebih lama untuk mengerjakannya, karena mungkin akan menggunakan beberapa siklus detak (clock cycle) prosesor.
Oleh karena itu, beberapa jenis komputer menggunakan prosesor sendiri untuk menangani bilangan floating point. Prosesor yang khusus menangani bilangan floating point disebut Floating Point Unit (FPU) atau disebut juga dengan nama math co-processor. FPU dapat bekerja secara paralel dengan prosesor. Dengan demikian proses penghitungan bilangan floating point dapat berjalan lebih cepat. Keberadaan FPU integrated (bersatu dengan prosesor) sudah menjadi kebutuhan standart komputer masa kini, karena banyak sekali aplikasi-aplikasi yang beroperasi menggunakan bilangan floating point.

CENTRAL LOGIC UNIT
    Setiap komputer harus mampu melakukan fungsi-fungsi sederhana, mereka selalu termasuk dalam CPU. Bagaimana sebuah perusahaan desain ALU mereka memiliki dampak yang signifikan terhadap kinerja keseluruhan CPU mereka. Pada artikel ini saya akan memberikan pengenalan singkat ke beberapa dasar-dasar desain ALU, Anda akan segera melihat bagaimana hal-hal rumit bisa mendapatkan.
      Dalam komputasi, unit aritmatika dan logika (ALU) adalah rangkaian digital yang melakukan operasi aritmatika dan logika. ALU adalah sebuah blok bangunan fundamental dari central processing unit komputer, dan bahkan mikroprosesor paling sederhana berisi satu untuk tujuan seperti menjaga timer. Prosesor ditemukan di dalam CPU modern dan unit pemrosesan grafis (GPU) mengakomodasi ALUs sangat kuat dan sangat kompleks, komponen tunggal mungkin berisi sejumlah ALUs.
Register
   Register merupakan alat penyimpanan kecil yang mempunyai kecepatan akses cukup tinggi, yang digunakan untuk menyimpan data dan/atau instruksi yang sedang diproses. Memori ini bersifat sementara, biasanya di gunakan untuk menyimpan data saat di olah ataupun data untuk pengolahan selanjutnya. jika dianalogikan, register ini dapat diibaratkan sebagai ingatan di otak bila kita melakukan pengolahan data secara manual, sehingga otak dapat diibaratkan sebagai CPU, yang berisi ingatan-ingatan, satuan kendali yang mengatur seluruh kegiatan tubuh dan mempunyai tempat untuk melakukan perhitungan dan perbandingan logika.
Set Register : Apabila bit ini bernilai 0, maka register data dapat diupdate setiap detiknya, namun apabila bit ini bernilai 1, maka register data tidak dapat diupdate. Bit ini tidak akan berpengaruh terhadap kondisi RESET.

CACHE MEMORY

    Cache memory adalah memori yang sangat cepat yang dibangun dalam sebuah central processing unit komputer (CPU), atau ditempatkan dalam chip yang terpisah. Fungsi memori cache untuk menyimpan instruksi yang berulang kali diperlukan dan dapat diakses sangat cepat untuk menjalankan program, memperbaiki sistem secara keseluruhan. Keuntungan dari memori cache adalah bahwa CPU tidak harus menggunakan sistem bus motherboard untuk mentransfer data. Setiap kali data harus melewati bus sistem, kecepatan transfer data memperlambat kemampuan motherboard. CPU dapat memproses data lebih cepat dengan menghindari hambatan yang diciptakan oleh sistem bus.
    Setelah sebagian besar program terbuka dan berjalan, mereka menggunakan sumber daya yang sangat sedikit. Ketika sumber daya ini disimpan dalam cache, program dapat beroperasi lebih cepat dan efisien. Cache dalam sistem komputer yang menjalankan CPU dengan cache kecil bisa memiliki benchmark yang lebih rendah. Cache yang dibangun ke dalam CPU itu sendiri disebut sebagai Level 1 (L1) cache. Cache yang berada dalam sebuah chip yang terpisah di sebelah CPU disebut Level 2 (L2) cache. Beberapa CPU memiliki keduanya, L1 cache dan L2 built-in dan menugaskan chip terpisah sebagai cache Level 3 (L3) cache.
            Cache yang dibangun dalam CPU lebih cepat daripada cache yang terpisah. Namun, cache terpisah masih sekitar dua kali lebih cepat dari Random Access Memory (RAM). Cache lebih mahal daripada RAM 
 
VIRTUAL MEMORY

memori virtual adalah teknik manajemen memori yang dikembangkan untuk kernel multitugas. Teknik ini divirtualisasikan dalam berbagai bentuk arsitektur komputer dari komputer penyimpanan data (seperti memori akses acak dan cakram penyimpanan), yang memungkinkan sebuah program harus dirancang seolah-olah hanya ada satu jenis memori, memori "virtual", yang bertindak secara langsung beralamat memori baca/tulis (RAM).
Sebagian besar sistem operasi modern yang mendukung memori virtual juga menjalankan setiap proses di ruang alamat khususnya sendiri. Setiap program dengan demikian tampaknya memiliki akses tunggal ke memori virtual. Namun, beberapa sistem operasi yang lebih tua (seperti OS/VS1 dan OS/VS2 SVS) dan bahkan yang modern yang (seperti IBM i) adalah sistem operasi ruang alamat tunggal yang menjalankan semua proses dalam ruang alamat tunggal yang terdiri dari memori virtual.
Memori virtual membuat pemrograman aplikasi lebih mudah oleh fragmentasi persembunyian dari memori fisik; dengan mendelegasikan ke kernel beban dari mengelola hierarki memori (sehingga menghilangkan keharusan untuk program dalam mengatasi hamparan secara eksplisit); dan, bila setiap proses berjalan dalam ruang alamat khususnya sendiri, dengan menghindarkan kebutuhan untuk merelokasi kode program atau untuk mengakses memori dengan pengalamatan relatif.
 
Sumber: http://id.wikipedia(dot)org/wiki/Memori_virtualscribe(dot)com

Tidak ada komentar:

Posting Komentar